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The current yellow fever outbreak in Brazil prompted wide-
spread yellow fever virus (YFV) vaccination campaigns, im-
posing a responsibility to distinguish between vaccine- and
wild-type YFV-associated disease. We developed novel
multiplex real-time reverse transcription PCRs that differ-
entiate between vaccine and American wild-type YFV. We
validated these highly specific and sensitive assays in an
outbreak setting.

ellow fever virus (YFV) is a mosquitoborne mem-

ber of the genus Flavivirus within the family Fla-
viviridae (online Technical Appendix Figure 1, panel A,
https://wwwnc.cdc.gov/EID/article/23/11/17-1131-
Techappl.pdf) that is endemic to Africa and South
America (/). Within YFV, 2 American and at least 3 Af-
rican genotypes can be differentiated (2). The American
YFV genotypes evolved from ancestral African viruses
several hundred years ago and now are found only in
South America (3).

In December 2016, Brazil reported the country’s larg-
est yellow fever (YF) outbreak in decades. Through May
31, 2017, a total of 3,240 suspected cases were reported,
including 435 deaths (4). The geographically widespread
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outbreak was caused by the American genotype 1 (online
Technical Appendix Figure 1, panel B) (5). In response to
the outbreak, authorities launched large-scale vaccination
campaigns aimed at distributing >20 million doses of YFV
vaccine (6). Two different live-attenuated vaccines are be-
ing deployed. Most contain the vaccine strain 17DD, pro-
duced in Brazil (7). International authorities are deploying
another 3.5 million doses of the standard vaccine strain,
17D (6). Both vaccine strains originate from the same pa-
rental strain, Asibi, and represent the West African geno-
type 2 (online Technical Appendix Figure 1, panel B).

While YFV vaccines are considered safe, rare vaccine-
associated adverse events (YF-VAAE) can occur (8). Vis-
cerotropic YF-VAAE symptoms can overlap those of YF
disease (9). In YFV-endemic regions, it is essential to dis-
tinguish between YF-VAAE and wild-type YFV infection
(10). Routine diagnostic procedures can take several days,
usually requiring 2 separate steps, detection and strain
characterization by nucleotide sequencing. Here, we pres-
ent 2 highly sensitive real-time reverse transcription PCRs
(RT-PCRs) designed to detect and discriminate between
YFV vaccine and American wild-type (hereafter referred
to as wild-type) strains within 1 hour.

The Study

We followed 2 rationales for real-time RT-PCR design.
First, a small number of oligonucleotides per assay can
be beneficial in resource-limited settings. Therefore, we
designed 5 different single-target assays using primers ca-
pable of simultaneously amplifying vaccine and wild-type
YFV strains. However, these criteria restricted the ability to
design optimal oligonucleotides. Therefore, we designed 2
additional dual-target assays that target 2 separate genomic
regions in which vaccine and wild-type strains differ suf-
ficiently from one another (Figure 1, panel A). Vaccine and
wild-type strains were generally discriminated by lineage-
specific hydrolysis probes within a single tube reaction, in-
capable of detecting the heterologous lineage due to high
numbers of nucleotide mismatches under oligonucleotide
binding sites (Figure 1, panel B) (/2).

We selected the 2 most sensitive single- and dual-
target assays on the basis of preliminary experiments us-
ing full viral RNA of wild-type and vaccine strains (Table;
online Technical Appendix Figure 2). For assay validation
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Figure 1. Design of new real-time RT-PCRs for differentiation between vaccine and wild-type YFV. A) YFV genomic representation
(GenBank accession no. DQ100292) with real-time RT-PCR target sites, indicated by arrowheads, and identity plot of all complete YFV
sequences available in GenBank as of May 24, 2017. Plots were done in SSE version 1.2 (11) using a sliding window of 200 and a step
size of 40 nt. Target sites of the eventually selected assays are indicated by filled arrowheads; all other designed assays excluded after
preliminary testing by open arrowheads. Of the real-time RT-PCR assays developed in this study, 1 assay targets only 1 genomic region,
whereas the other assay targets 2 different genomic regions of vaccine and wild-type YFV strains. Both PCRs are duplex assays in which
vaccine and wild-type YFV RNA are detected by lineage-specific probes. We called the assay targeting only 1 genomic region a single-
target assay and the assay targeting 2 separate genomic regions a dual-target assay, even though the term dual-target commonly refers
to detection of 2 different genes of a single pathogen, which is not the case in this study. B) Alignment of real-time RT-PCR oligonucleotide
binding sites with YFV 17DD and American wild-type strains. The 100% consensus sequences were generated in Geneious (Biomatters
Ltd., Auckland, New Zealand) and mapped to respective PCR primers and probes. Potential nucleotide mismatches are indicated by
asterisks. D = A/G/T, M = A/C, R = A/IG, W = A/T, Y = C/T. Black indicates a mismatch with all American wild-type strains, gray a mismatch
with some American wild-type strains, based on the complete genetic information of American YFV strains and YFV vaccine strains

available in GenBank as of March 24, 2017. C, capsid; E, envelope;

Fwd, Forward; NS, nonstructural protein; prM, precursor membrane;

Rev, reverse; RT-PCR, reverse transcription PCR; UTR, untranslated region; YFV, yellow fever virus.

and quantification, we designed 2 in vitro transcripts (IVTs)
based on the vaccine strain 17DD and an outbreak strain
from Brazil (5), as described previously (/2).

The 95% lower limit of detection of the single- and du-
al-target assays ranged from 4.0 to 8.8 RNA copies/reaction
for vaccine and wild-type YFV strains (online Technical Ap-
pendix Figure 3). Discrimination between vaccine and wild-
type strains was reliable even at high concentrations of [IVTs
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and full viral RNA in the range of 10° copies/reaction. Assay
specificity was assessed using a set of 39 high-titer flavivi-
rus cell culture isolates (online Technical Appendix Figure
1, panel A), all of which tested negative in the novel assays.

Hypothetically, near-simultaneous infection with
wild-type YFV and vaccination may occur in the outbreak
setting in Brazil. In the case of co-occurrence of vaccine
and wild-type YFV within a single sample, | target may
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Table. Oligonucleotides for new yellow fever virus real-time RT-PCRs*

Target genomic

Oligonucleotide name Primer/probet Sequence, 5 —» 3'f domain, no. bases Orientation
Single-target assay
YFVsingle-fwd Primer GTGGAGRAGCAGRGCRGATGAG 2,653-2,674 +
YFVsingle-rv Primer AAHGGRTGWGTYCCTCTCTGR 2,743-2,763 -
YFVsingleP-vac Probe (FAM) TTCTGTTGTCGTGCAGGATCCAAAGAATG 2,710-2,738 +
YFVsingleP-wt Probe (YAK) TAGAYATYTCAGTGGTGGTYCAAGACYC 2,703-2,730 +
Dual-target assay
YFVdual-fwd-vac Primer GGGACTAGCGTGATCATTGA 3,296-3,315 +
YFVdual-rv-vac Primer GAATAACTTTCCCGCTATCCGT 3,356-3,377 -
YFVdualP-vac Probe (FAM) TCCCCGTCCATCACAGTTGCC 3,317-3,337 -
YFVdual-fwd-wt Primer CAATGCCATYCTTGAGGAGAAT 2,677-2,698 +
YFVdual-rv-wt Primer CGGATGTGTCCCTCTCTG 2,744-2,761
YFVdualP-wt Probe (YAK) TCTTGRACCACCACTGAGATGTCTACC 2,701-2,727 -

*25 L real-time RT-PCR reactions were performed using the Superscript Ill one-step RT-PCR system with Platinum Taq polymerase (Thermo Fisher
Scientific, Darmstadt, Germany). Target genomic domain positions according to GenBank reference genome NC_002031. Reactions were set up with 5
pL of RNA; 12.5 pL of 2x reaction buffer; 0.4 uL of a 50 mM magnesium sulfate solution (Superscript Il one-step RT-PCR system with Platinum Taq
polymerase kit, Thermo Fisher Scientific); 1 ug of nonacetylated bovine serum albumin; and 1 uL enzyme. Single-target assay reactions contained 400
nM forward primer, 600 nM reverse primer, and 280 nM of each probe. Dual-target assay reactions contained 400 nM of each primer and 220 nM of each

probe. RT-PCR, reverse transcription PCR.

tProbes are labeled with either fluorescein amidite (FAM) or Yakima Yellow (YAK) at the 5'-end and a Black Hole Quencher (TIB MOLBIOL
Syntheselabor GmbH, Berlin, Germany) at the 3'-end. Primer concentrations were optimized using the YFV vaccine strain IVT and the wild-type YFV IVT.
Amplification involved 50°C for 15 min, followed by 95°C for 3 min and 45 cycles of 95°C for 15 s and 58°C for 30 s with fluorescence read at the 58°
annealing/extension step on a LightCycler 480 thermocycler (Roche, Basel, Switzerland).

iH = A/C/T,M=A/C,R=A/G,W =A/T,Y =C/T.

occur in relatively higher concentrations than, and thus
outcompete amplification of, the other target, resulting
in an incomplete test result. We observed no target com-
petition with the dual-target assay even in the presence
of high concentrations of the heterologous RNA (Figure
2, panel A). In contrast, the single-target assay showed
decreased sensitivity at <1,000 copies/reaction upon the
presence of 100-500-fold higher concentrations of the
heterologous target.

Commonly used clinical specimens for YFV diagnos-
tics may contain substances that can interfere with PCR
(13). To assess our assays’ performance in different clini-
cal matrices, we used human plasma and urine previously
tested negative for YFV and spiked them with 10'-10° cop-
ies/mL of either vaccine or wild-type YFV. Three repli-
cates of each spiked specimen were purified individually
and tested by using our PCRs and a YFV reference assay
(13). We detected samples containing >1,000 copies/mL
in all replicates irrespective of the clinical matrix (Figure
2, panel B). Detection of samples containing <100 copies/
mL was unreliable in all 3 assays. As exemplified before
for Zika virus, final RNA copy numbers in eluates used for
RT-PCR will depend on the RNA extraction protocol, il-
lustrating that even assays with analytical sensitivity in the
single-copy range may not correctly detect weakly positive
clinical specimens (/2).

Clinical specimens may differ from spiked materials,
and assay performance needs to be assessed in an outbreak
context. Therefore, we compared the new assays to the ref-
erence assay (/3) in a Brazilian flavivirus reference labora-
tory, using different clinical specimens obtained from 11
YF cases previously confirmed by nucleotide sequencing as
wild-type YFV infections. The sensitivity of the dual-target
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assay was identical to that of the reference assay, whereas
the single-target assay was slightly less sensitive (Figure 2,
panel C). Identification of wild-type YFV was reliable in all
cases, consistent with specific detection of lineages even in
highly positive clinical specimens.

Conclusions

The new PCRs we describe enable YFV detection with
diagnostic sensitivity. The dual-target assay was superior
to the single-target assay in sensitivity and robustness to
target competition. However, the single-target assay may
be advantageous in resource-limited settings and may be
more convenient for multiplex usage in combination with
assays targeting co-circulating arboviruses, such as chikun-
gunya, Zika, and dengue viruses. Beyond rapid test results,
the real-time RT-PCR—based protocols provide consider-
ably higher sensitivity than protocols aiming at generating
longer PCR amplicons necessary for strain discrimination
by nucleotide sequencing, enabling conclusive results even
when virus concentrations in specimens are low or when
these materials are available only in limited quantity. Of
note, PCR-based YFV detection is most reliable 5—7 days
after symptom onset, during the viremic phase. Reliable
YFV surveillance should thus include serologic methods.
However, serologic tests used for virologic diagnostics
cannot discriminate between vaccination and wild-type
YFV infection.

Of note, our novel assays are limited to vaccine and
American YFV wild-type strains. West African wild-type
stains would be detected by our YFV vaccine assays due
to the close genetic relatedness between these strains, but
our assays are not suitable to detect the genetically diverse
Eastern and Central African wild-type strains. If needed, one
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Figure 2. Validation of new real-time RT-PCRs for differentiation between vaccine and wild-type YFV. A) Effects of target competition on
YFV real-time RT-PCRs. Mean cycle threshold (C,) values are plotted against IVT concentrations. Triplicates were tested for each datum
point. B) Validation of the assays with clinical matrices. Spiked viruses were vaccine strain 17D and the American genotype 2 wild-type
strain BOL88/1999. RNA purification was performed using the MagNA Pure 96 Viral NA Small Volume Kit (Roche, Basel, Switzerland)
according to the manufacturer’s instructions. C) Clinical validation. Clinical specimens (serum, liver, whole blood, and plasma) from 11
YFV-infected patients were tested. RNA was extracted using the MagMAX Pathogen RNA/DNA Kit (Thermo Fisher, Sdo Paulo, Brazil)
and serial dilutions of the RNA were tested using the new assays and a YFV reference assay (72). Viral loads were determined for
clinical specimens using a commercially available quantitative real-time RT-PCR (Bio Gene Research Yellow Fever PCR kit; Bioclin,
Minas Gerais, Brazil), following the manufacturer’s instructions. Standard curves and sample copies per millileter were calculated using
an in-house IVT standard. IVT, in vitro transcript; RT-PCR, reverse transcription PCR; YFV, yellow fever virus.

could extend our assays by an additional primer/probe com-
bination targeting the Eastern and Central African genotypes.

Recently, the first attenuated live dengue virus vac-
cine was approved in several countries, including Brazil
(14). Inactivated Japanese encephalitis virus vaccines
are currently replaced by attenuated live vaccines in
Asia (15), and an attenuated live West Nile virus vac-
cine has completed a phase II clinical trial (/6). Large-
scale deployment of these vaccines will raise the need
to discriminate between potential vaccination-associat-
ed events and wild-type virus infection in symptomatic
patients. Our work with YFV may provide a diagnos-
tic blueprint for establishing and validating suitable
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methods for differentiating between vaccine and wild-
type viruses for these other viruses as well.
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Technical Appendix Figure 1. Genetic relationships of flaviviruses and yellow fever virus genotypes.
A) Maximume-likelihood phylogeny of the full polyprotein genes of selected flaviviruses. Red indicates
human pathogenic viruses. Bold indicates viruses of medical importance in Brazil. Asterisks indicate
viruses that were used for specificity testing of real-time RT-PCR assays. The scale bar indicates
evolutionary distances of 0.1 differences per site. The HKY nucleotide substitution model was used
with a complete deletion option in MEGAY. Black circles at nodes represent over 75% statistical
support of grouping from 1,000 bootstrap replicates. B) Neighbor-joining phylogeny of complete coding
sequences of representative Yellow Fever virus strains identified by strain name, country, year of
isolation (where applicable) and GenBank accession number. Bold and red type indicates sequences
of the current outbreak in Brazil (5). Bold indicates vaccine strains. The tree was generated using a
percentage distance substitution model in MEGA7 and the complete deletion option. The final dataset
encompassed 11,139 nt. Black circles at nodes represent over 98% support of grouping from 1,000
bootstrap replicates. The scale bar indicates genetic distance of 5%. The tree was rooted by

Wesselsbron virus (branches truncated as indicated by slashed lines).
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Supplementary Figure S1. Bench protocol for real-time RT-PCR assays
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Single-target and dual-target assay

Example formulation: Thermo Fisher SuperScriptIII OneStep RT-PCR System with Platinum Taq DNA

Polymerase
Single target assay Dual target assay
MasterMix single rxn [pL] MasterMix single rxn [pL]
H20 (RNAse free) 1.2 H>O (RNAse free) -
MgSO4(50mM) 0.4 MgSO4(50mM) 0.4
2x Reaction mix 12.5 2x Reaction mix 12:5
BSA (1 mg/ml)* 1 BSA (1 mg/ml)* 1
Fwd primer (10 uM) 1 Fwd primer 1 (10 pM) 1
Rev primer (10 pM) 1.5 Fwd primer 2 (10 uM) 1
Probe 1 (10 uM) 0.7 Rev primer 1 (10 pM) 1
Probe 2 (10 uM) 0.7 Rev primer 2 (10 uM) 1
SSIII/Taq EnzymeMix ik Probe 1 (10 uM) 0.55
Probe 2 (10 uM) 0.55
SSIII/Taq EnzymeMix 1
20 20
Template RNA 5 Template RNA 5

*non-acetylated. This component is only necessary if using glass capillary LightCycler. Can be replaced with water
in plastic vessel machines such as ABI 7500, LC 480, etc.

Thermocycling conditions

50°C 15
95°C 3

95°C 15"

sgoc 307 | X
40°C 30"

Primers/probe (5'-3")

YFVsingle-fwd GTGGAGRAGCAGRGCRGATGAG

YFVsingleP-vac 6-FAM-TTCTGTTGTCGTGCAGGATCCAAAGAATG-BBQ
YFVsingleP-wt YAK-TAGAYATYTCAGTGGTGGTYCAAGACYC-BBQ
YFVsingle-rv AAHGGRTGWGTYCCTCTCTGR

YFVdual-fwd-vac GGGACTAGCGTGATCATTGA

YFVdualP-vac 6FAM-TCCCCGTCCATCACAGTTGCC-BBQ
YFVdual-rv-vac GAATAACTTTCCCGCTATCCGT

YFVdual-fwd-wt CAATGCCATYCTTGAGGAGAAT

YFVdualP-wt YAK-TCTTGRACCACCACTGAGATGTCTACC-BBQ
YFVdual-rv-wt CGGATGTGTCCCTCTCTG

CHARITE - UNIVERSITATSMEDIZIN BERLIN
Gliedkorperschaft der Freien Universitat Berlin und der Humboldt-Universitat zu Berlin
Charitéplatz 1 | 10117 Berlin | Telefon +49 30 450-50 | www.charite.de

Technical Appendix Figure 2. Bench protocol for real-time RT-PCR assays.
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Technical Appendix Figure 3. Analytical sensitivity of YFV real-time RT-PCR assays. Cl: confidence

interval; LOD: lower limit of detection. Probability of detection determined in probit regression analyses

is plotted against IVT copies/reaction in 8 replicates. Diamonds represent observed positive results.

Solid line shows predicted proportion of positive results at a given IVT input; dashed line shows 95%

Cl. In-vitro transcripts were designed upon strain 17DD and the Brazilian outbreak strain ES-505,

GenBank accession numbers DQ100292 and KY885001, respectively.



